培訓(xùn)啦 考試問答 > 導(dǎo)師介紹

浙師大數(shù)理與信息工程學(xué)院導(dǎo)師介紹:王應(yīng)前

教培參考

教育培訓(xùn)行業(yè)知識型媒體

發(fā)布時間: 2024年12月22日 10:32


姓名:王應(yīng)前
職稱:教授
所在學(xué)院:數(shù)理與信息工程學(xué)院
研究方向:圖的連通性和圖的染色理論
主講課程:主講本科課程:數(shù)學(xué)分析
指導(dǎo)專業(yè):(0701) 數(shù)學(xué)(一級)
科研項目(課題)
1.參與國家自然科學(xué)基金面上項目3項,省自然科學(xué)基金面上項目1項。
2.主持省教育廳自然科學(xué)基金重點項目一項: 項目名稱:可平面圖的3可選擇性研究與應(yīng)用 項目編號:20070441 研究日期:2008.1-2009.12(已結(jié)題)
3.主持省自然科學(xué)基金面上項目一項: 項目名稱:平面圖的3染色和全染色 項目編號:Y6090699 研究日期:2010.1-2010.12 (進(jìn)行中)
論文著作
1.In Science China 1.Yingqian Wang,Qijun Zhang,On 3-choosability of triangle-free plane graphs,Science China Mathematics,2011,Accepted.
2.WANG YingQian,MAO XiangHua,Lu HuaJing Wang WeiFan,On 3-colorability of planar graphs without adjacent short cycles,Science China Mathematics,April 2010 Vol.53 No.4: 1129-1132.
3 SHEN Lan WANG YingQian,Total colorings of planar graphs with maximum degree at least 8,Science in China series A: Mathematics,Aug.,2009,Vol.52,No.8,1733-1742.
4 Ying-qian WANG,Min-le SHANGGUAN Qiao LI,On total chromatic number of planar graphs without 4-cycles,Science in China series A: Mathematics,Jan.,2007,Vol.50,No.1,81-86.
5 WANG Yingqian,Optimization problems of the third edge-connectivity of graphs,Science in China: Series A Mathematics,2006 Vol.49 No.6 791-799.
6 WANG Yingqian LI Qiao,Upper bound of the third edge-connectivity of graphs,Science in China Ser.A Mathematics,2005 Vol.48 No.3 360-371.
In Discrete Mathematics
1.Yingqian Wang,Qijun Zhang,Decomposing a planar graph with girth at least 8 into a forest and a matching,Discrete Math.,2011,accepted
2 Yingqian Wang,Huajing Lu,Ming Chen,Planar graphs without cycles of length 4,5,8,or 9 are 3-choosable,Discrete Math.,310 (2010) 147-158.
3 Lan Shen,Yingqian.Wang,Planar graphs with maximum degree 7 and without 5-cycles are 8-totally-colorable,Discrete Math.,310 (2010) 321-324.
4 Huajing Lu,Yingqian Wang,Weifan Wang et al.,On the 3-colorability of planar graphs without 4-,7- and 9-cycles,Discrete Math.,309 (2009) 4596-4607.
5 Yongzhu Chen,Yingqian Wang,On the diameter of generalized Kneser graphs,Discrete Math.,308 (2008) 4276-4279.
6 Yingqian Wang,Ming Chen,Liang Shen,Plane graphs without cycles of length 4,6,7 or 8 are 3-colorable,Discrete Math.,308 (2008) 4014-4017.
7 Ying Qian Wang,Super restricted edge-connectivity of vertex-transitive graphs,Discrete Math.,289 (2004) 199-205.
In Information Processing Letters
1.Jingwen Zhang,Yingqian Wang,(-total-colorability of plane graphs with maximum degree at least 6 and without adjacent short cycles,Inform.Process.Lett.,110 (2010) 830-834.
2.Yingqian Wang,Huajing Lu,Ming Chen,A note on 3-choosability of planar graphs.Inform.Process.Lett.,105 (2008) 206-211.
3.Mickael Montassier,Andre Raspaud,Weifan Wang,Yingqian Wang,A relaxation of Havel’s 3-color problem,Inform.Process.Lett.,107 (2008) 107-109.
4.Liang Shen,Yingqian Wang,A sufficient condition for a planar graph to be 3-choosable,Inform.Process.Lett.,104 (2007) 146-151.
In Others
1.Yingqian Wang,Qian Wu,Liang Shen,Planar graphs without cycles of length 4,7,8 or 9 are 3-choosable,Discrete Applied Math.159 (2011) 232-239.
2.Dingzhu Du,Lan Shen,Yingqian Wang,Planar graphs with maximum degree 8 and without adjacent triangles are 9-totally-colorable,Discrete Applied Mathematice,157 (2009) 2778-2784.
3.Lan Shen,Yingqian Wang,Weifan Wang,Ko-Wei Lih,On the 9-total colorability of planar graphs with maximum degree 8 and without intersecting triangles,Applied Mathematics Letters,22 (2009) 1369-1373.
4.Lan Shen,Yingqian Wang,On the 7 Total Colorability of Planar Graphs with Maximum Degree 6 and without 4-cycles,Graphs and Combinatorics ,(2009) 25: 401-407.
5.Huiyu Sheng,Yingqian Wang,A structural theorem of planar graphs with some applications,Discrete appl.Math.2011,accepted subject to minor revesion.
指導(dǎo)研究生簡況
1.2003級1人,上官敏樂,獲浙江省優(yōu)秀碩士學(xué)位論文,發(fā)表SCI論文1篇;
2.2004級1人,楊根尚;
3.2005級2人,沈亮,陳明,共發(fā)表SCI論文5篇;
4.2006級3人,沈嵐,陸華晶,郭宏斌,共發(fā)表SCI論文9篇;其中沈嵐獲校優(yōu)秀碩士學(xué)位論文;
5.2007級3人,章齊君,毛向花,陶鑫,已發(fā)表SCI論文4篇;其中毛向花獲校優(yōu)秀碩士學(xué)位論文;
6.2008級3人,盛慧玉,姚瀟彥,張靜雯;
7.2009級3人,吳倩,盧秋麗,盛平;
8.2010級2人,徐靈姬,亢瑩利。
*如果發(fā)現(xiàn)導(dǎo)師信息存在錯誤或者偏差,歡迎隨時與我們聯(lián)系,以便進(jìn)行更新完善。聯(lián)系方式

研究生報考咨詢1V1指導(dǎo)(點擊咨詢)

免責(zé)聲明

本文章來源為院校研究生官網(wǎng),如對稿件內(nèi)容有疑問,請與院校招生辦聯(lián)系。培訓(xùn)啦轉(zhuǎn)載出于非商業(yè)性的教育和科研之目的,不代表贊同其觀點或證實其內(nèi)容的真實性。如轉(zhuǎn)載稿涉及版權(quán)等問題,請來函136311265@qq.com聯(lián)系修改或刪除。

985大學(xué) 211大學(xué) 全國院校對比 專升本 美國留學(xué) 留求藝網(wǎng)

溫馨提示:
本文【浙師大數(shù)理與信息工程學(xué)院導(dǎo)師介紹:王應(yīng)前】由作者教培參考提供。該文觀點僅代表作者本人,培訓(xùn)啦系信息發(fā)布平臺,僅提供信息存儲空間服務(wù),若存在侵權(quán)問題,請及時聯(lián)系管理員或作者進(jìn)行刪除。
我們采用的作品包括內(nèi)容和圖片部分來源于網(wǎng)絡(luò)用戶投稿,我們不確定投稿用戶享有完全著作權(quán),根據(jù)《信息網(wǎng)絡(luò)傳播權(quán)保護條例》,如果侵犯了您的權(quán)利,請聯(lián)系我站將及時刪除。
內(nèi)容侵權(quán)、違法和不良信息舉報
Copyright @ 2024 培訓(xùn)啦 All Rights Reserved 版權(quán)所有. 湘ICP備2022011548號 美國留學(xué) 留求藝