楊老師談教育
通過對地理教育的實踐、反思,發(fā)表對優(yōu)化教學(xué)的觀點。
發(fā)布時間: 2024年12月28日 17:22
形如a+bi(a,b∈R)的數(shù)叫復(fù)數(shù),其中i叫做虛數(shù)單位。下面就和初三網(wǎng)小編具體了解一下吧,供大家參考。
復(fù)數(shù)的定義我們把形如z=a+bi(a,b均為實數(shù))的數(shù)稱為復(fù)數(shù),其中a稱為實部,b稱為虛部,i稱為虛數(shù)單位。當z的虛部等于零時,常稱z為實數(shù);當z的虛部不等于零時,實部等于零時,常稱z為純虛數(shù)。復(fù)數(shù)域是實數(shù)域的代數(shù)閉包,即任何復(fù)系數(shù)多項式在復(fù)數(shù)域中總有根。
復(fù)數(shù)是由意大利米蘭學(xué)者卡當在十六世紀首次引入,經(jīng)過達朗貝爾、棣莫弗、歐拉、高斯等人的工作,此概念逐漸為數(shù)學(xué)家所接受。
復(fù)數(shù)的四則運算加法法則:(a+bi)+(c+di)=(a+c)+(b+d)i;
減法法則:(a+bi)-(c+di)=(a-c)+(b-d)i;
乘法法則:(a+bi)·(c+di)=(ac-bd)+(bc+ad)i;
除法法則:(a+bi)÷(c+di)=[(ac+bd)/(c2+d2)]+[(bc-ad)/(c2+d2)。
復(fù)數(shù)的幾何意義(1)復(fù)平面、實軸、虛軸:
點Z的橫坐標是a,縱坐標是b,復(fù)數(shù)z=a+bi(a、b∈R)可用點Z(a,b)表示,這個建立了直角坐標系來表示復(fù)數(shù)的平面叫做復(fù)平面,x軸叫做實軸,y軸叫做虛軸。顯然,實軸上的點都表示實數(shù),除原點外,虛軸上的點都表示純虛數(shù)
(2)復(fù)數(shù)的幾何意義:復(fù)數(shù)集C和復(fù)平面內(nèi)所有的點所成的集合是一一對應(yīng)關(guān)系。
這是因為,每一個復(fù)數(shù)有復(fù)平面內(nèi)惟一的一個點和它對應(yīng);反過來,復(fù)平面內(nèi)的每一個點,有惟一的一個復(fù)數(shù)和它對應(yīng)。